Urban Heat Islands, Part 1: How Cool Metal Roofs Benefit the Community

Summer in the city usually means it’s hot – hotter than surrounding areas. Those who have investigated this phenomenon have identified the presence of “urban heat islands” – places that heat up disproportionately to those nearby.

Urban Heat Islands Form from an Abundance of Dark Surfaces in Cities

One reason for this is the predominance of dark asphalt pavement and dark-colored roofing. The significance is that dark surfaces are known to absorb sunlight and re-radiate it back as heat. That’s how thermal solar panels work, but it is also dramatically apparent when walking across a black asphalt parking lot in the summer sun. The heat is coming not only from the sun above, but from the pavement below.

If nearby buildings have dark-colored roofs, the same is happening there. Studies have shown that this re-radiated heat can build up in urban areas and raise the surrounding air temperature by up to 5 degrees Fahrenheit on average. So while it might be a tolerable 85 degrees and pleasant a few miles away, the urban core could be sweltering in a self-induced 90 degrees – even higher on those dark roofs and parking lots.

Measuring Solar Heat

How do we know what materials help or hinder these urban heat islands? First, all materials will absorb and reflect varying amounts of solar radiation based primarily on the color and reflectance of a material. The way to measure that variation is based on ASTM test standards E903 and C1549. These tests are used to determine the solar reflectance (SR) of materials, which is expressed as the fraction of solar energy that is reflected on a scale of 0 to 1. Black paint, for example, has an SR of 0 and bright white titanium paint has an SR of 1 (highest reflectance).

Reducing Heat Islands with Cool Metal Roofs

Taking things one step further, the Solar Reflectance Index (SRI) has been developed as a measure of the ability of a constructed surface, particularly roofs, to stay cool in the sun. It relies on both an initial SR value as well as a thermal emittance value being determined for a material or product. Using ASTM E1980 and values from the Cool Roof Rating Council Standard (CRRC-1), an SRI of between 0 (common black surface) and 100 (common white reflective surface) can be determined. The higher the SRI, the higher the amount of solar radiation that is reflected and thermal radiation minimized, thus creating a comparatively cool surface.

Metal roofing is particularly well suited to achieve high SRI values, minimize heat build-up, and reduce urban heat islands. Recognizing this, many manufacturers test metal roofing products and publish the SRI results, allowing professionals and consumers to make informed decisions. Of course, other roofing materials are tested for SRI values too, but few test as effectively and economically as metal roofing.

(For specific information about the radiative properties of MBCI’s colors, consult our listings in the respective databases on the CRRC and ENERGY STAR websites.)

Benefits to the Community

Specifying and building with high-SRI metal roofs has benefits beyond just the immediate building—reducing urban heat islands keeps excess heat from building up in the surrounding community too. Higher summer temperatures can be detrimental to plants, trees, and people who are outside in urban areas. By using cool metal roofs that reduce the surrounding air temperature, plants don’t lose water as quickly, people are more comfortable, and trees are less stressed. Cooler air temperatures around a building also means air conditioning does not need to work as hard or as often. That translates into less energy use and fewer greenhouse gas emissions from electricity to run the air conditioning—both of which could significantly contribute to cleaner air in the community.

Results

By recognizing the existence of urban heat islands and their impact on people and the environment, those of us in the design and construction field can choose to do something about them. By specifying and installing high-SRI cool metal roofs, the environment benefits, people benefit and our buildings benefit.

Learn more in our blog post, “Code Requirements for Cool Roofs with Climate Zone Specifics.”

The Benefits of Integrating Daylighting Systems with Metal Panels

When metal roofing and wall systems of insulated metal panels, or IMPs, are combined with integrated daylighting and electrical lighting systems (such as with skylights, windows and translucent panels) it can improve occupant wellness and overall building performance. Are you curious if the return would be worth your investment? Uncover the recent advancements in daylighting technologies, the benefits and how to measure your building’s success.

Advancements in Daylighting Technologies and IMPs

In recent years, IMP assemblies have seen significant improvements, including more effective seals and thermal breaks as well as better thermal performance.

A range of novel daylighting products and technologies have been introduced in recent years that aid in the deployment of natural illumination for a multitude of occupancies—maximizing daylighting effectiveness while also maintaining the envelope’s barrier and thermal performance. These tools include pre-engineered, integrated metal envelope and roof solutions with compatible curbless skylights, light tubes, pan-type prismatic skylights, automated dimming controls for lighting, motorized shades and other components.

One example of how new tools are replacing more traditional products is the use of domed and pan-type units with prismatic embossing, which refracts and directs two to four times as much illumination into the indoor spaces when solar incidence angles are more acute, such as in the early morning and late in the day. These prismatic elements also help eliminate “hot spots” and reduce glare and ultraviolet (UV) deterioration from daylighting.

Daylighting with Metal Roofing

Benefits of Investing in Daylighting

Overall, using the current crop of novel skylight products in combination with a highly thermally efficient base system of metal panel walls and roofing will reduce excessive solar heat gain as they reduce the electrical base load for lighting. Highly diffusing acrylic and polycarbonate lenses and spectrally selective glass openings are very effective for maximizing functional visible light indoors while inhibiting unwanted heat gain. Many of the skylight aperture designs block 85% of infrared (IR) and 99.9% of UV light, which also reduces the unwanted degradation of products and materials inside the buildings. Additionally, the new generation of skylights also optimizes solar harvesting because many of the lenses have a minimal effect on VT.

In this way, the use of skylights with metal roofing and IMPs can be an effective way to meet the requirements of IECC 2012 and state energy codes. The skylights reduce overall electrical loads without adding unacceptable levels of solar heat gain, and their small relative area means the overall roof U-values remain low.

How to Measure the Success of Daylighting

Building teams will encounter a number of key variables that help measure the effectiveness of proposed daylighting designs. The most common (and valuable) daylighting performance metrics in use today include the following:

• Daylight factor
• Window-to-wall ratio, or WWR
• Effective aperture, or ea.
• Daylighting depth
• Solar heat-gain coefficient, or ShgC
• Haze factor
• U-factor

Using the above tools and terminology, building teams can better assess the benefits of daylighting strategies with skylights, prismatic pan-type products and solar light pipes, among others. In particular, these are important for meeting the widely used 2012 International Energy Conservation Codes (IECC) and ASHRAE 90.1 as well as state energy codes and “reach targets” such as green building certifications, the Passive House standard and others.

How to Learn More

The use of building systems combining metal roofing with skylights and integrated lighting provide significant life-cycle performance. Much of this is due to the research and development behind the individual products and materials used for these applications.

For a more in-depth look at daylighting within the context of metal roof and wall systems, please refer to MBCI’s whitepaper, Shining Light on Daylighting with Metal Roofs, which showcases the strong rates of return of using integrated daylighting systems with novel prismatic optics and high-efficiency lighting on metal envelopes with good thermal and barrier performance.

Download the White Paper, Daylighting with Metal Roofs

Find a sales representative