Understanding LEED for Green Metal Buildings

Designing and constructing sustainable buildings has become a mainstream expectation of most building owners. Whether for reduced energy costs, higher returns on investment, or as an organizational philosophy, “green” building solutions are in demand. Perhaps the best known and most often cited program to achieve these goals is the US Green Building Council’s (USGBC’s) LEED® rating system. While some may think that green buildings are more complicated and costly to build, that is not actually the case. This is especially true when metal building materials are used. In fact, metal buildings are an ideal and economical way to pursue sustainability goals and LEED certification. How? We break it down as follows:

LEED

The LEED® Program

The LEED program has been in use since 1998 and is now used worldwide. It is a voluntary, point-based rating system that allows for independent review and certification at different levels. These levels include Certified (40-49 points), Silver (50-59 points), Gold (60-79 points), or Platinum (80 or more points). Since it allows for choices in which points are pursued, innovation and flexibility are entirely possible as long as specific performance criteria are met. It also encourages collaborative and integrative design, construction and operation of the building.

Points are organized into six basic categories, many of which can be addressed through metal building design and construction, as summarized below.

  • Location and Transportation: Metal buildings can be manufactured and delivered to virtually any location. That means they can support LEED criteria for being located near neighborhoods with diverse uses, available mass transit, bicycle trails, or other sustainable amenities. Metal building parking areas can also be designed to promote sustainable practices for green vehicles and reduced pavement. This all contributes toward obtaining LEED eligibility.
  • Sustainable Sites: Adding a building to any site will certainly impact the natural environment already there. Delivering portions of a pre-engineered metal building package in a sequence to arrive as needed means that the staging area on-site can be minimized—reducing site impacts. Additionally, using a “cool metal roof” has been shown to reduce “heat island” effects on the surrounding site and also qualify for LEED.
  • Water Efficiency: Any design that reduces or eliminates the need for irrigation of plantings and other outdoor water uses is preferred. Incorporating metal roofing with gutters and downspouts, as is commonly done on metal buildings, allows opportunities to capture rainwater for irrigation or other uses. It also helps control water run-off from the roof and assists with good storm water control.
  • Energy and Atmosphere: Metal buildings can truly shine in this category. Creating a well-insulated and air-sealed building enclosure is the most important and cost-effective step in creating an energy conserving building. A variety of insulation methods for metal building roof and wall systems are used to achieve this. Typically, metal building construction uses one or more layers of fiberglass insulation and liners combined with sealant and air barriers. Alternatively, insulated metal panels (IMPs) provide all of these layers in a single manufactured sandwich panel with impressive performance. Windows, skylights and translucent roof panels can provide natural daylight, allowing electric lighting to be dimmed or turned off. For buildings seeking to generate their own electricity,  standing-seam metal roofing provides an ideal opportunity for the simplified installation of solar photovoltaic (PV) systems. Metal roofs generally provide a sustainable service life in excess of 40 years. This means they can outlast the PV array, thus avoiding costly roof replacements during most PV array lifespans.
  • Materials and Resources: Life Cycle Assessments (LCAs) are recognized by LEED as the most effective means to holistically assess the impacts that materials and processes have on the environment and on people. Fortunately, the Metal Building Manufacturer’s Association (MBMA) has collaborated with the Athena Sustainable Materials Institute and UL Environment to develop an industry-wide life cycle assessment report. There is also an Athena Impact Estimator that can help with providing LEED documentation. Metal buildings support exceptional environmental performance through the significant use of recycled steel and the reduced need for energy intensive concrete due to lighter weight buildings.
  • Indoor Environmental Quality: Most people spend much more time indoors than outside, which impacts human health. Therefore, LEED promotes or requires using materials that don’t contain or emit harmful substances. It also promotes design options for natural daylight, exterior views and acoustical control to promote psychological and emotional well-being. Metal buildings are routinely designed to readily incorporate components that help achieve these indoor qualities.

In addition, some LEED points are available for demonstrating innovation and addressing priorities within a geographic region.

Considering the qualities listed above, metal buildings clearly provide a prime opportunity to pursue LEED certification at any level. To find out more about the LEED rating system, visit https://new.usgbc.org/leed. To find out more about successfully designing and constructing metal buildings pursuing LEED certification, contact your local MBCI representative.

Sustainability and Metal Buildings

The movement of the construction industry to create buildings that are more sustainable throughout their life cycle continues to be a fundamental part of a well-designed and well-constructed building. This comes from the building owners who are expecting it, designers who are more skilled at achieving it, construction companies who have incorporated it into their workflows, and manufacturers who have invested significantly in it. These sustainability efforts include the design, fabrication, and construction of pre-engineered metal buildings across the country.

A number of different certification programs (LEED, Green Globes, The Living Challenge, etc.) promote and can independently certify buildings as meeting different levels of “green” or “sustainable” designs. And the recently released International Green Construction Code has been adopted by a number of localities to codify green design and construction. While the details of these programs vary, they all address some fundamental aspects of buildings, and all apply to metal buildings.

Building Site Impacts:

Shop fabrication of metal buildings means the onsite work can be focused to stay close to the building footprint. Once built, the roofs of metal buildings can further reduce site impacts. For example, metal roofs provide an excellent opportunity to collect rainwater so it can be used for non-potable purposes, such as landscaping or toilet flushing. Further, by specifying metal roofing with a high Solar Reflectance Index (SRI) value, the roofing remains cooler than a dark-colored roof and reduces the so-called “heat island effect” surrounding the building.

Reduces Energy Usage:

Metal buildings can also be designed and constructed to create an energy-efficient building enclosure. The Metal Building Manufacturers Association (MBMA) publishes an Energy Design Guide for Metal Building Systems, available at www.mbmamanual.com, which can help in the process. As MBMA points out, builders can “select the best balance of high-performance roof and wall insulation (including fully insulated metal panels), windows and doors, and foundation insulation that works best and saves the most energy and money when considering all the project requirements.” A metal building with a sloped roof can also be the ideal base to support solar panels that can provide an onsite source of renewable energy for the building to capitalize on.

Responsible Material Usage:

The construction industry has become attuned to looking at the impacts of materials over their full life cycle, and this includes the metal building industry. The MBMA has taken the lead on preparing an industry-wide Life Cycle Assessment (LCA) (http://www.mbma.com/Life_Cycle.asp) that includes primary structural steel frames and secondary structural steel (purlins and girts), along with roof and wall products used in metal buildings. MBMA has also prepared Environmental Product Declarations (EPDs) based on the LCA and industry-wide product category rules. By using this information, designers, building owners, and constructors can determine the environmental impacts of metal buildings from the extraction of raw materials through manufacturing and preparation to ship to the construction site (“cradle to gate”). The fact that steel products of all types contain a significant percentage of recycled material, and can be again recycled at the end of the service life of the building, helps present a more sustainable picture of steel than does some other building products. Further, the shop fabrication of components helps eliminate construction waste on the job site.

Sustainability
At MBCI, we take LEED project documentation seriously and issue only project-specific documentation for USGBC submittals, so please contact your sales representative for LEED documentation on existing contracts.

Indoor Environmental Quality:

The interior spaces of buildings are generally considered sustainable when they protect the health and well-being of the people who use the building. In the regard, metal buildings provide some advantages over others. First, many of the metal building components can be pre-finished before ever arriving at the site. This means that onsite finishing, which can release harmful volatile organic compounds (VOCs) or other substances into the air, are notably reduced or eliminated a the building location. Further, the structural flexibility offered by steel construction means that windows, doors, and skylights can be appropriately spread throughout a building to provide natural daylight and exterior views, which have been shown to have great benefits to the people who work in, visit, or otherwise use the buildings.

Overall, it is the full interaction of all parts of a building, including the owners and users of a facility, that will determine the final sustainability of any building. Nonetheless, it is clear that metal buildings can be a great place to start on the sustainability path. To find out more about metal products and systems that can help your next building be more sustainable, contact your local MBCI representative.

Urban Heat Island, Part 2: How Cool Metal Roofs Benefit Building Owners

In our prior blog post, Urban Heat Islands, Part 1: How Cool Metal Roofs Benefit the Community, we identified the existence of urban heat islands and their contribution to higher air temperatures that are found in urban areas compared to surrounding locations. We also identified a high Solar Reflectance Index (SRI), on a scale of 0-100, as the means to specify materials that can help reduce urban heat islands and benefit entire communities. In this post, let’s focus on the specific benefits to the building owner when cool metal roofs are used.

Cool Metal Roof
The Boundy Residence features a cool metal roof

Energy Savings for Cool Metal Roofs

In many commercial and industrial buildings, energy use is one of the largest ongoing operating expenses, meaning that building owners and operators are usually quite interested in lowering or controlling that expense. Cool metal roofs with a high SRI rating can help with that quest. For instance, since air conditioning is commonly a larger cost that heating for many such buildings, it is a natural place to target. Lowering the temperatures at the roof means there is less heat surrounding the building, reducing air conditioning load and directly impacting energy costs.

Comfort in Outdoor Areas

Some building types, such as restaurants, retail, and entertainment facilities, rely on outdoor seating or gathering areas to support their business. If urban heat islands make these spaces uncomfortable to spend time in, the business usually suffers too. Providing these buildings with high-SRI metal roofing can improve the situation.

Long-Term Durability

Building materials can degrade prematurely if they routinely exposed to high heat. The heat can cause them to dry out, become brittle, or simply decompose faster than expected. Using high-SRI roofing is not only good for the longevity of the roofing, it can be good for the durability of the materials directly under the roof as well. Roof sheathing and other substrate materials directly in contact with the roofing receive the same intense solar radiation that the roofing surface does.

Attic spaces below the roofing plane also receive the heat, making attic temperatures in excess of 130 degrees common, causing degradation of materials in those spaces, including mechanical and electrical equipment. That could mean more expansion and contraction of connections and joints or it could mean that air conditioning duct work is being heated, contrary to the efficient operation of the system. In any of these cases, a cool metal roof will help alleviate the negative impacts of solar heat and allow materials to achieve full life expectancy.

Supports LEED Certification

In the Sustainable Sites category of the LEED rating system, Heat Island Reduction can be selected as a credit to receive either one or two points toward certification. This credit relies on both roof and non-roof strategies and looks for calculations of solar reflectance (SR) and demonstrated Solar Reflectance Index (SRI) levels on specified products.

Cool Metal Roofs

Favorable Payback

All of these benefits above can translate to financial benefits to the building owner or operator. Any cost premium incurred for selecting a high-SRI cool metal roof can likely be realized very quickly in energy cost savings, increased business, or maintenance and durability savings. In addition, the benefits of human comfort and achievement of LEED or other sustainability goals can be realized for the life of the building.

Part III – Transparency Plus Consensus: A Win-Win for Everyone

Part III transparency plus consensusIt has been a long time since my last blog on this subject. This is not only because I’ve been busy but also because the landscape of green building programs in general has changed significantly since Part II, and I wanted to wait to see how things shook out before I wrote something that might be immediately outdated. If you remember, we left off in Part II talking about how LEED, the most popular green building program in the US, has not been developed through an ANSI accredited consensus process. Furthermore, the resulting lack of transparency was dubiously ironic given that LEED demands a high level of transparency from building product manufacturers min the latest version of their program, LEED v4.

We also discussed the related but more general movement for manufacturers to fully disclose all of the ingredients in their products to a third party who then compares that list to lists of known hazardous substances and disclose any matches on a product label or public disclosure for all to see. This movement has been fueled by several large architecture firms sending letters to building product manufacturers threatening to stop specifying their products unless they participate. Although most manufactures agree that there is merit to disclosure and are anxious to participate in a fair program, they have not been privy to discussions regarding the logistics of such a program nor have they been allowed to participate in any kind of a standard development governing the disclosure process. This makes manufacturers reluctant to participate, given their vulnerability in such a situation. This risk is leveraged by the fact that currently the only standards that dictate the rules of such a program are under the control of consortiums who have little to no scientific expertise and, frankly, have not been friendly to the building products industry in the past.

I also mentioned that there are alternative programs to LEED that have been developed through a valid consensus process. Specifically, the International Green Construction Code (IgCC), ASHRAE 189.1 and Green Building Assessment Protocol for Commercial Buildings (also known as Green Globes) are ANSI standards that outline the relevant requirements for anyone to view. However, the USGBC marketing machine and resulting popularity of LEED prevented wide use of these standards. Thus, they remained largely unutilized. That is until this year, when the USGBC, IgCC and ASHRAE signed a Memorandum of Understanding, promising to work together and create a favorable consensus by eliminating duplication of provisions and assigning an area of responsibility for each group to maintain separately.

Although no documents have yet to be created, it appears that the administration and enforcement provisions of the new standard will come from the IgCC, and the technical content will come from ASHRAE 189.1, both of which are consensus based. Meanwhile, LEED will require compliance with 189.1 as a prerequisite to an upcoming interim version of LEED. This approach allows an Authority Having Jurisdiction (AHJ) to adopt the IgCC as a minimum standard of construction; dropping any reference to LEED they might currently have as minimum project requirements for all buildings. This leaves LEED to evolve as a completely voluntary program going forward and push the envelope of green building, which is their core mission. Meanwhile, Green Globes remains ANSI accredited and still exists as a commercial competitor to LEED. This environment should result in a more user friendly application process, the lack of which been a ubiquitous criticism of LEED for years, because Green Globes is much more user-oriented.

So, it appears that the most popular green building programs are poised to move in the
direction of a true consensus, which is fantastic news for everyone involved. However, the creation and development of disclosure programs, which will not be in the initial technical requirements provided by ASHRAE 189.1, remains largely a one-sided affair with no seat for manufacturers at the table. Besides the contentious nature of the subject in general, there are major philosophical questions that have to be addressed before Health Product Declarations (HPDs), or any type of disclosure in general, can be brought into the main stream. That subject is beyond the scope of this blog, but I encourage you to read a very good article on the trappings of HPDs called “Disclosure: The Newest Dimension of Green Building” by Jim Hoff.

The good news is that there may be a viable alternative to HPDs on the horizon. ASTM has a current open work item to develop a true consensus based standard guiding the issuance of a Product Transparency Declaration (PTD), which has much the same intent as an HPD. As discussed in Part I, the development of ASTM standards is a highly transparent process that allows everyone, including manufacturers, to come to the table. I encourage every designer to join ASTM and get involved in this process, especially those firms who participated in the letter writing campaign, and forgo HPDs until PTDs are available.

Yes, it will take a little longer; the reality that the development of consensus based standards takes time. But just like the development of the laws that govern this country, there is far too much risk involved in getting it wrong. Instead, having these standards developed by a consensus-based process is the only way the finished product will be truly useful and meaningful.

All Those Sustainability Acronyms Mean Something, Right?

PCR, LCA, EPDBy now I’m sure you’ve heard about PCRs, LCAs, and EPDs.  Simply put, a PCR is a set of product category rules; an LCA is a life cycle analysis; and an EPD is an environmental product disclosure.  But what do they mean and what’s the purpose of it all?  In the broadest sense, these are mechanisms used for the sustainability movement.  The most granular is the EPD, which is a product-based discussion (i.e., disclosure) of the environmental effects caused by a specific product or product type.   Architects and building designers use EPDs to compare products in order to select the most environmentally friendly products to be used in environmentally friendly buildings.

Developing an EPD can only happen after the creation of a set of product category rules (PCR).  A PCR sets the rules for creating LCAs and EPDs.  An example of a PCR is “Product Category Rules for Preparing an Environmental Product Declaration (EPD) for Product Group: Insulated Metal Panels & Metal Composite Panels, and Metal Cladding: Roof and Wall Panels,” which was developed by UL through the efforts of the Metal Construction Association (MCA).

Only after a PCR is developed can a verifiable LCA or EPD be developed.  An LCmA and EPD are similar but different.  An LCA uses industry-average data, and an EPD is specific to a product or product type.  For example, “LCA of Metal Construction Association Production Processes, Metal Roof and Wall Panel Products” provides industry-average information about the environmental aspects of three key products: steel insulated metal panels, aluminum metal composite material panels, and steel roll-formed claddings.  This LCA is based on 24-gauge material.

EPDs are typically more product specific.  (An EPD is typically based on an LCA, so most often LCAs are developed prior to EPDs.)  For example, the EPD titled “Roll Formed Steel Panels For Roof and Walls” provides similar environmental data as an LCA, but includes information about 29-, 26-, 24-, 22-, 20- and 18-gauge materials.  This provides additional product specific information that can be used by designers when an industry average is not adequate.  And importantly, more LEED points are garnered from a product-specific EPD than an LCA because of the specificity.  LEED is certainly a driver of this!

LCAs and EPDs used in the roof industry are often focused on cradle-to-gate analysis, and exclude the use phase and end-of-life phase.  Ideally, an LCA or EPD should include the use and end-of-life phases so architects and designers have a complete cradle-to-grave analysis.  Without the use phase, designers are allowed to freely select the service life of a metal roofing product, for better or worse, without industry guidance.  And, the advantages gained through metal recycling at the end of life are also omitted from MCA’s LCA.

It’s all about standardized disclosure of environmentally based product data.

Learn more about MBCI’s LCA, EPDs and other sustainability efforts, here.

Part II – Transparency in Building Products

Transparency in Building Products

A huge buzzword in the building products industry these days is transparency.  The green building movement, which has previously focused on high-performing buildings with a strong emphasis on energy efficiency and fossil fuel use reduction, has increasingly put its cross hairs on occupant exposure risk in the last few years.  Although that change alone is probably enough to start some controversy, how this new emphasis is being implemented is really fueling the fire for new arguments.  If you read our last blog, Part I – The importance of consensus in building standards,  then you should be familiar with how building codes are developed in a consensus-based forum in which all affected parties have some say.  However, many of the movers and shakers of the green building movement have bypassed that forum by folding the requirements they want to emphasize into voluntary programs of their own creation.  At the same time, they lobby owners and building officials to carry some level of compliance to these programs, offering a benefit of being able to say their buildings or communities are “green” by displaying plaques on the façade or being listed on a website.

Although that tact seems fair on the surface, it really puts a lot of power into the hands of self-proclaimed experts to decide on the definition of “green” they want to use for their program. As we discussed in Part I, the ANSI consensus process requires policy-making organizations to transparently prove their competence in subjects they affect with their policy.  Furthermore, they also have to publicly announce the formation of a committee (called a “Call for Committee”) they designate to create and maintain this policy.  They must also allow members of the public to submit curricula vitae for consideration to join the committee without necessarily being a member of the organization.  This introduces a mechanism to balance the power the committee is usurping by having control of the policy going forward.  Unfortunately, no such mechanism exists for many of the authors of voluntary green building programs and the negative aspects of this are particularly pronounced in the area of building product transparency.

One of the most common ways green building programs administer transparency is through the use of a “red list,” which is essentially a list of banned substances.  Using California Proposition 65 or Europe’s RoHS as a model, many of the NGO-based programs related to buildings have some type of requirement that aims to reduce or eliminate the use of ingredients that could possibly be harmful to building occupants.  In many instances, these same NGOs offer third-party listing programs that a building manufacturer can join and have their products declared as meeting the requirements.  Many people see this as a conflict of interest since an NGO, typically funded through donations, is in a position to act as a gatekeeper, allowing in only those companies or industries that support the NGO financially or align themselves with the NGO’s agenda.

But there is a deeper, more disturbing aspect:  Although the list itself may start out as a publicly accepted and scientifically based enumeration of toxic ingredients, NGOs often add other substances that are not known, or in some cases, even suspected, to be toxic in order to dissuade architects from specifying certain products or deploying certain construction methods.  Quite often, the NGO will develop the red list in closed discussion forums where manufacturers have no ability to provide evidence to substantiate that their products are indeed safe.  At best, a manufacturer can ask the NGO to consider exceptions or modifications.  But ultimately, a manufacturer has no assurance that their case has been adequately considered because they are not allowed to attend the forum.  Sadly, this is what passes for transparency in green construction more often than not lately.

This lack of due process came to a head in 2013, when members of congress began to express concern that LEED, the green building program used by the military and the General Services Administration, was not an ANSI-based standard.  In response, the GSA formally announced that they would take public comment on the subject and decided nine months later that they would continue to specify LEED but other ANSI-based programs would be considered going forward as well.  Meanwhile, the military announced that they were developing their own standard, distancing themselves from LEED.  This quelled the discussion for a while and allowed other, even hotter subjects like healthcare to take the spotlight.  But concern lives on that the lack of transparency in the development of LEED and similar programs is leading the public down a dangerous, politics-as-usual road.

However, the news is not all bad.  There are several organizations that use an ANSI-based process to develop and maintain their programs so that the requirements can readily be incorporated into public policy.  ASHRAE, ICC, and a newcomer in the U.S., The Green Building Initiative, have all invested the tremendous amount of time and effort it takes to develop their standards in an ANSI-based public forum, and their respective programs offer a building owner or code official a great alternative to vague voluntary programs subject to interpretation by self-proclaimed experts.  We will explore several of those options in our next blog.

Part 1 – The Importance of Consensus in Building Standards

Building Code Standards BlogMost people understand the purpose of a building code: To ensure the safety of the occupants and to establish the minimum accepted performance level of the building and its systems.  Fewer people understand that because building codes are adopted into law by a governing body, technically referred to as an Authority Having Jurisdiction or AHJ, they are an in fact an extension of the law or ordinance that brings them into effect.  Knowing that, you should not be surprised to learn that like laws, building codes in America can’t just be arbitrarily made up by somebody having the authority and know-how to do so.  Instead, they must have gone through some type of consensus process in which all affected entities or their representatives have the opportunity to participate. This concept, called Due Process of Law, is central to many governmental charters such as the Magna Carta and The Constitution of the United States of America and is designed to ensure that a person’s individual rights are not unfairly taken away.

Under the US Constitution, laws are written by Congress and interpreted by judges.  Members of Congress are elected by their constituents and judges are either appointed by elected officials or elected themselves.  Similarly, building codes are written by consensus bodies, like the International Code Council or ICC, and interpreted by Building Officials, who are generally appointed by elected officials.  The code development process used by ICC is one where any interested member of the public can participate and is guaranteed a forum to propose changes and comment on the proposed changes submitted by others using a system governed by Roberts Rules of Order.  After discussion and debate, the code committee votes on the individual proposals and those that pass are incorporated into the code, guaranteeing due process.  (Actually, it’s quite a bit more complicated than this but for purposes of this blog, let’s just leave it at that.)

However, building codes commonly do not actually spell out all of the requirements for buildings and building systems.  More and more, the code will delegate low-level detailed requirements to a different type of document called a standard, and then brings the requirements contained within by referencing the standard in the code by name.  Likewise, these standards then must also be developed through a consensus process administered by an adequate standard development body.  But because all standard development bodies are structured a little differently, it is not realistic to mandate that consensus process directly.  Instead, another independent body called The American National Standards Institute or ANSI, certifies standard development bodies as having a sufficient consensus processes to be deemed as meeting the incorporating code requirements for due process.  Examples of these bodies are the American Society of Civil Engineers (ASCE) who develop ASCE 7, the document that determines the minimum load requirements for buildings; the American Society of Testing and Materials (ASTM) a group widely known for developing material and testing specifications for general use; and the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), who develops ASHRAE 90.1, the document that spells out the minimum building energy efficiency requirements.  If you are an architect or engineer, all of these acronyms should sound very familiar to you.

Another acronym that you are probably familiar with is LEED, which stands for Leadership in Energy and Environmental Design.  It is developed and maintained by the US Green Building Council (USGBC) and is the premier green building program in the world.  Interestingly though, the development landscape changes drastically when it comes to green construction programs like LEED.  You see, the USGBC is not an ANSI accredited standard developer and thus LEED is not an actual official standard, hence the use of the word “program”.  How then is it possible that USGBC can have so much say in how buildings, particularly publicly owned buildings, get built?  The answer is that they get around this limitation by structuring LEED as a voluntary program and then lobbying the potential owners of buildings, like the US and state governments, into using their program by executive order rather than legislating the requirement directly.  If you’ve watched TV at all in the last year, particularly with respect to immigration reform, you know how controversial this approach can be.  Nevertheless, it is perfectly legal in this context.

This really has not been a significant issue to date because LEED does have a consensus process (albeit not an ANSI accredited one) and LEED credit requirements have been fairly uncontroversial in past versions.  However, LEED v4, the latest generation of the wildly popular green building program, changed all of that by adding credits that are less about design and functionality of the building and more about transparency with respect to building product ingredients to ensure occupant health and comfort.  Let’s be clear: Most reasonable people, including building product manufacturers, don’t have a problem with increased transparency and want more occupant comfort and health.  But it is how LEED defines “transparency” in version 4 has many people up in arms and they point to the hypocrisy of developing a definition to the word “transparency” during a closed-door meeting with no manufacturers at the table as what is wrong with green building as it exists today.  My next blog will explore that concept further.

Separating Fact from Fiction: Let Your Meter be Your Guide

Being a building scientist is kind of like being a librarian. You have to separate fact from fiction. Case in point: The Green Building Movement. I’ve been a building designer for 20 years and I have never seen the kind of change and repositioning of building science in the time that I’ve seen in just the last five years. And of course, with that come agendas, minutia, politics and confusion. It’s unavoidable. So, when people ask me about green building, I feel the duty to encourage them to stick to what is tangible and measurable and try to stay out of speculation. Yeah, ok, that’s pretty obvious advice. But it cuts deeper than that because you actually have to track meaningful, FACT-BASED metrics.

Consider the regional material credit in LEED. The purpose of that credit is to avoid burning fuel to transport raw materials to the project site. So, if the final manufacturing location of a product is within a 500 mile radius of the project and you can prove that the material used in the product was extracted and/or harvested from the earth within that circle as well, you get credit for using it.  But does that truly guarantee the minimum carbon footprint? Most products used in buildings have been through a long and complex supply chain of co-mingling and transportation between intermediate points and the simplistic criterion of only considering the end points of that chain isn’t going to guarantee any level of performance, so why track the metric?

At the other end of that spectrum is energy use. This is NOT the same as energy efficiency, mind you. The definition of efficiency is the amount of work done divided by the amount of resources consumed to achieve that work. If my efficiency is 1, then I’ve wasted nothing. If it’s zero, I’ve wasted everything. It seems like a good metric to use, but it isn’t always obvious what number to use in the numerator (that’s the top number in a fraction, by the way) which makes efficiency somewhat subjective as a metric.

Electricity use on the other hand, is an absolute metric. You use electricity and have to pay for it. You have a meter to tell you how much you’ve bought. That’s a pretty convenient thing because you don’t need a fancy computer with wireless controls and bells and whistles (which use electricity, by the way) to print a graph of your electricity usage. All you have to do is get up off your derriere and look at it.  (Yes, it is unfortunate that meters are outside but you need the sun exposure to produce Vitamin D anyway.)

So when it comes to things like roof top solar, the subject of my last blog, the energy you make directly offsets the energy you use. The meter “spins” slower or even backwards (net-metered solar installations use digital meters, but whatever) and at the end of the month, less electricity is used.  Simple, predictable and efficient; there is no question what your impact is.

Now when it comes to energy used for climate control, you are in a quandary.  The energy you use is going to be highly dependent on the outside conditions, so how do you account for that? Well, the fact of the matter is that weather, although it varies quite a bit from day to day and year to year, follows a very consistent pattern over time and some things you can do will always make a difference.

Most commercial buildings are under insulated. We know that from studies conducted over many years by the government. The reason is simple: Commercial buildings are not usually built by the electricity bill payer, so the motivation to invest in things like extra insulation and insulated windows is not there. Therefore, if you should inherit a commercial building for your business, before you move in, you should probably peel back those ceiling tiles and tap on that glass to see what is between you and the outside world.

Should you discover that you need a little extra help, there are some great products on the market these days and one of them is spray-foam insulation. However, if the building is old enough and needs a new exterior finish on the roof or wall anyway, consider an all-in-one solution like an insulated metal panel. This product combines one of the most durable exterior materials around – coated steel – and the same great insulation performance as the spray-on foams without the special equipment. Plus, the excellent air barrier performance minimizes air infiltration. And here is a tip: Roof or wall, choose an exterior color that fits your climate. Consider using lighter colors in the south and darker colors in the north.  That can make a substantial difference if the building is under insulated. The poor meter won’t even know what hit it.

Find a sales representative

Power is restored at the Houston plant. We’re working to resume production ASAP. Thank you for your patience.