Understanding LEED for Green Metal Buildings

Designing and constructing sustainable buildings has become a mainstream expectation of most building owners. Whether for reduced energy costs, higher returns on investment, or as an organizational philosophy, “green” building solutions are in demand. Perhaps the best known and most often cited program to achieve these goals is the US Green Building Council’s (USGBC’s) LEED® rating system. While some may think that green buildings are more complicated and costly to build, that is not actually the case. This is especially true when metal building materials are used. In fact, metal buildings are an ideal and economical way to pursue sustainability goals and LEED certification. How? We break it down as follows:

LEED

The LEED® Program

The LEED program has been in use since 1998 and is now used worldwide. It is a voluntary, point-based rating system that allows for independent review and certification at different levels. These levels include Certified (40-49 points), Silver (50-59 points), Gold (60-79 points), or Platinum (80 or more points). Since it allows for choices in which points are pursued, innovation and flexibility are entirely possible as long as specific performance criteria are met. It also encourages collaborative and integrative design, construction and operation of the building.

Points are organized into six basic categories, many of which can be addressed through metal building design and construction, as summarized below.

  • Location and Transportation: Metal buildings can be manufactured and delivered to virtually any location. That means they can support LEED criteria for being located near neighborhoods with diverse uses, available mass transit, bicycle trails, or other sustainable amenities. Metal building parking areas can also be designed to promote sustainable practices for green vehicles and reduced pavement. This all contributes toward obtaining LEED eligibility.
  • Sustainable Sites: Adding a building to any site will certainly impact the natural environment already there. Delivering portions of a pre-engineered metal building package in a sequence to arrive as needed means that the staging area on-site can be minimized—reducing site impacts. Additionally, using a “cool metal roof” has been shown to reduce “heat island” effects on the surrounding site and also qualify for LEED.
  • Water Efficiency: Any design that reduces or eliminates the need for irrigation of plantings and other outdoor water uses is preferred. Incorporating metal roofing with gutters and downspouts, as is commonly done on metal buildings, allows opportunities to capture rainwater for irrigation or other uses. It also helps control water run-off from the roof and assists with good storm water control.
  • Energy and Atmosphere: Metal buildings can truly shine in this category. Creating a well-insulated and air-sealed building enclosure is the most important and cost-effective step in creating an energy conserving building. A variety of insulation methods for metal building roof and wall systems are used to achieve this. Typically, metal building construction uses one or more layers of fiberglass insulation and liners combined with sealant and air barriers. Alternatively, insulated metal panels (IMPs) provide all of these layers in a single manufactured sandwich panel with impressive performance. Windows, skylights and translucent roof panels can provide natural daylight, allowing electric lighting to be dimmed or turned off. For buildings seeking to generate their own electricity,  standing-seam metal roofing provides an ideal opportunity for the simplified installation of solar photovoltaic (PV) systems. Metal roofs generally provide a sustainable service life in excess of 40 years. This means they can outlast the PV array, thus avoiding costly roof replacements during most PV array lifespans.
  • Materials and Resources: Life Cycle Assessments (LCAs) are recognized by LEED as the most effective means to holistically assess the impacts that materials and processes have on the environment and on people. Fortunately, the Metal Building Manufacturer’s Association (MBMA) has collaborated with the Athena Sustainable Materials Institute and UL Environment to develop an industry-wide life cycle assessment report. There is also an Athena Impact Estimator that can help with providing LEED documentation. Metal buildings support exceptional environmental performance through the significant use of recycled steel and the reduced need for energy intensive concrete due to lighter weight buildings.
  • Indoor Environmental Quality: Most people spend much more time indoors than outside, which impacts human health. Therefore, LEED promotes or requires using materials that don’t contain or emit harmful substances. It also promotes design options for natural daylight, exterior views and acoustical control to promote psychological and emotional well-being. Metal buildings are routinely designed to readily incorporate components that help achieve these indoor qualities.

In addition, some LEED points are available for demonstrating innovation and addressing priorities within a geographic region.

Considering the qualities listed above, metal buildings clearly provide a prime opportunity to pursue LEED certification at any level. To find out more about the LEED rating system, visit https://new.usgbc.org/leed. To find out more about successfully designing and constructing metal buildings pursuing LEED certification, contact your local MBCI representative.

Design to Your Client’s Mindset

Spring Fire Department Station 78

As an architect, when did you last hear your client say, “Money is no object?”  This happens … almost never!  More likely what you hear is “I want high quality for low cost.”  The challenge of the architect is to provide your client with high quality at a reasonable and appropriate price.  A large part of finding that balance is determining the values, goals and long-term perspective of your client.

If a building owner wants a metal roof, it’s likely they already have a reason why.  Perhaps their existing roof didn’t provide the service life they expected it to, or it was damaged disproportionately.  Or the building owner understands that a metal roof can last a really long time.  Or they like the look of a metal panel or metal shingle roof, with all the colors and shapes available.  As an architect, it is important to determine your client’s mindset.  In the end, the question comes down to, “How long will you own this building (or home)?”  And, although less common, a building owner may just want to build a high-end, long-lasting building no matter their desired length of ownership.

The large part of the cost of a metal roof, similar to other roof types, is the labor to remove the existing roof and install the new one.   Upgrading from a 24-gauge metal to 22-gauge metal is a minimal increase in material costs that is easily justifiable for the long term.  Metal thickness, coating type and thickness, and penetration and edge details are the areas where upgrades and enhancements occur.

Argue against value engineering.  Roofs certainly can be out of sight, out of mind to most owners, but building owners who are considering metal roof systems understand the concept of life-cycle analysis, whether they know it or not.  Overtly reinforce their long-term outlook to help ensure that high-end penetration details and edge details are designed and installed.  Look to the industry standards—SMACNA, NRCA—for details that will last the life of the metal panels.  Realize that metal panels don’t leak; joinery and flashings are the potential leak locations.  Upgrade the details to be of the highest quality.

Understanding the mindset of your client is critical to determining the level of design.  This is definitely a cost issue.  The “university” client thinks long term; the “developer” client thinks short term.  However, there is much middle ground that requires inquisitive discussion with an owner to determine his/her goals.  Ask the questions, and design a metal roof based on your client’s mindset.

All Those Sustainability Acronyms Mean Something, Right?

PCR, LCA, EPDBy now I’m sure you’ve heard about PCRs, LCAs, and EPDs.  Simply put, a PCR is a set of product category rules; an LCA is a life cycle analysis; and an EPD is an environmental product disclosure.  But what do they mean and what’s the purpose of it all?  In the broadest sense, these are mechanisms used for the sustainability movement.  The most granular is the EPD, which is a product-based discussion (i.e., disclosure) of the environmental effects caused by a specific product or product type.   Architects and building designers use EPDs to compare products in order to select the most environmentally friendly products to be used in environmentally friendly buildings.

Developing an EPD can only happen after the creation of a set of product category rules (PCR).  A PCR sets the rules for creating LCAs and EPDs.  An example of a PCR is “Product Category Rules for Preparing an Environmental Product Declaration (EPD) for Product Group: Insulated Metal Panels & Metal Composite Panels, and Metal Cladding: Roof and Wall Panels,” which was developed by UL through the efforts of the Metal Construction Association (MCA).

Only after a PCR is developed can a verifiable LCA or EPD be developed.  An LCmA and EPD are similar but different.  An LCA uses industry-average data, and an EPD is specific to a product or product type.  For example, “LCA of Metal Construction Association Production Processes, Metal Roof and Wall Panel Products” provides industry-average information about the environmental aspects of three key products: steel insulated metal panels, aluminum metal composite material panels, and steel roll-formed claddings.  This LCA is based on 24-gauge material.

EPDs are typically more product specific.  (An EPD is typically based on an LCA, so most often LCAs are developed prior to EPDs.)  For example, the EPD titled “Roll Formed Steel Panels For Roof and Walls” provides similar environmental data as an LCA, but includes information about 29-, 26-, 24-, 22-, 20- and 18-gauge materials.  This provides additional product specific information that can be used by designers when an industry average is not adequate.  And importantly, more LEED points are garnered from a product-specific EPD than an LCA because of the specificity.  LEED is certainly a driver of this!

LCAs and EPDs used in the roof industry are often focused on cradle-to-gate analysis, and exclude the use phase and end-of-life phase.  Ideally, an LCA or EPD should include the use and end-of-life phases so architects and designers have a complete cradle-to-grave analysis.  Without the use phase, designers are allowed to freely select the service life of a metal roofing product, for better or worse, without industry guidance.  And, the advantages gained through metal recycling at the end of life are also omitted from MCA’s LCA.

It’s all about standardized disclosure of environmentally based product data.

Learn more about MBCI’s LCA, EPDs and other sustainability efforts, here.

Find a sales representative